人工智能助力因材施教:实践误区与对策

作 者:

作者简介:
汪琼,北京大学教育学院教授,博士,博士生导师;李文超,北京大学教育学院博士研究生。北京 100871

原文出处:
现代远程教育研究

内容提要:

实现以学生为中心的因材施教,为每个学生定制出符合其特点的学习发展路径,既是一种教育理想,也是一种教育原则。虽然未来人工智能技术可能助力实现大规模因材施教,但是目前大多数教育人工智能产品还处于初级发展阶段,在实际应用中存在着因言过其实、误以为真、不切实际等错误认识造成的实践误区,比如,过分依赖系统对学生的判断和帮扶、查漏补缺加重了薄弱生的学习负担、将自定步调重复学习视为个性化学习等。当前的智能教育虽然可以通过技术手段优化一部分教学工作,但离实现大规模因材施教还有很长的路要走。我们需要清醒地认识到当前人工智能教育应用的局限,在开展人工智能助力教育的实践中,既要强调和加强人工智能时代教师人工智能素养、数据素养和测评素养的培养,又要督促智能教育产品研发机构和厂商基于教育理论精细化产品设计,增加算法透明度,引导和支持人机协同的因材施教早日实现。


期刊代号:G1
分类名称:教育学
复印期号:2021 年 10 期

字号:

       中图分类号:G434 文献标识码:A 文章编号:1009-5195(2021)03-0012-07

       一、引言

       因材施教是教育领域一直以来的理想追求(张如珍,1997)。由于每个学习者的先验知识不同,即使学习相同的内容,不同学习者达到同等掌握程度所需花费的时间不同,学习过程中遇到的困难点也不一样。在生师比居高不下的传统教学环境中很难做到教学因人而异,但是教育研究者并没有放弃寻找在群体教学中达到一对一教学效果的教学方法(Bloom,1984)。信息技术特别是人工智能技术的发展,让教育界对于“智能时代的大规模个性化教育”充满期待(刘德建等,2018;袁振国,2020)。

       目前全国众多地区都在大力开展智慧教育试点工作,教育部已经设立了18个“智慧教育示范区”创建区域和2个培育区域,不少城市也纷纷设立人工智能实验校开展“人工智能+教育”的探索。然而,在实际应用中因存在言过其实、误以为真、不切实际等错误认识,引起了一些争议和困惑。本文从分析人工智能助力因材施教的三个实践误区入手,阐明了智能系统助力因材施教的四条实践原则,并就如何与尚处于初级发展阶段的智能教学系统人机协同以实现个性化教学提出了两条建议。

       二、人工智能助力因材施教的实践误区

       智能教学系统大多以布卢姆的“掌握学习”(Bloom,1968)教育理念为基础。“掌握学习”也是一种教学策略,即认为:虽然学生对于某学科的学习态度有着喜欢和不喜欢之分,但是如果在其学习过程中,能够给予其所需要的学习支持,比如,合适的内容、充分的学习时间,以及及时的学习指点,大多数学生都可以达到所期望的教学目标。

       掌握学习理论与中国教育经验十分吻合。在实际教学中,教师普遍认为:造成学生之间差异的原因是有些学生功夫没花到位,题做得不够多。于是很多学校使用智能教学系统的主要方式就是通过系统给学生出题,为学生提供更多的练习机会。一些智能系统标榜带有知识图谱,可以做到精准训练,更是受到学校欢迎,成为实施“大规模个性化学习”的基础。但是理想与现实总是存在差距的。人工智能助力因材施教在实践中还存在很多问题。这些问题主要源于人们对智能教育存在一些不切实际的认识。

       1.误区一:过分依赖系统对学生的判断与帮扶

       目前的智能教学系统还属于发展初期,很多系统智能技术含量并不高,中小学的教学应用中也并不需要太高的智能技术。比如,中小学学科知识点有限,学科知识图谱由有经验的教师绘制要优于人工智能系统自动生成;许多题库系统中的测试题的难度、知识点等元数据标签还是人工标记的,因此也存在出错的可能;适应性出题技术(如基于项目反应理论的测试设计)是30年前已经成熟的教育测评技术,但目前入校的智能系统采用的并不多;等等。

       当然,我们不能因为这些系统没有采用智能技术就诋毁这些系统对于教学的价值,只是在实际应用中需要有清醒的认识,不能盲目认为智能系统对学生的判断都是正确的,也不能假设智能系统提供的练习题目都是学生需要的而不加审核地直接布置给学生。目前一些学校使用系统自动出题、自动判题来对学生知识掌握情况进行判断,存在过分相信系统的问题。虽然让学生在系统中做练习,有可能解决教师时间不足的问题,让教师把原先花在批改作业上的时间用于与学生一对一的沟通上,是更好地发挥了人机各自擅长的作用,但是如果教师没有因此对有问题的学生作业进行个别化诊断,却可能会出现一些学生被过度训练、另一些学生没有精准练习的问题。

       笔者观摩过的一节习题课就出现过类似的情况。在一堂基于智能系统的综合题目练习课中,有几位学生课前测验表现不佳,通过系统强化训练后,这些学生仍旧不能正确解题,说明这些学生在知识技能掌握方面可能有一个子技能没有掌握好。教师虽然发现了这个问题,但是因为智能系统中没有针对这个子技能的练习,教师也就没有脱离系统来对这些学生进行这方面的专门训练。这堂课对于这些学生来说就是浪费时间,毫无帮助的。

       相反,不依赖智能系统,依靠提升教师的测评能力,却早就在实践中被证实是非常有效的教学策略。比如,成都市一所知名中学的新分校,用了3年的时间就使该校学生的成绩超过了老校区。校长说他只用了一招,就是要求每位教师每天自己出题给学生布置作业,而且要对学生的作业做数据分析,由此提高了教学的针对性。这种方式下,虽然教师的教学工作量有所增加,但教学能力提升明显,教学效果显著。安徽蚌埠市教育局也把命题作为教师岗位研修的基本活动,已经连续两年开展赛命题活动①。这些都是有经验老校长的共识:教师的命题能力——学术术语是测评素养(Assessment Literacy),即能够选择合适的考核方式精准地测定学生的知识掌握情况和运用能力——是优秀教师的核心能力。

       由此,我们可以得出人工智能助力因材施教的第一个实践原则:在智能时代,技术可以方便教师出题和进行作业分析,但我们不能完全依赖智能系统所做的教学判断,这会使教师变得越来越迟钝。我们需要借助智能技术淬炼教师的核心能力,尤其是测评素养。

       2.误区二:薄弱生最需要自适应系统查缺补漏

       薄弱生通常被认为是最需要智能教学系统的(向天成等,2015;刘邦奇,2020),其背后的假设是:学习成绩不佳的学生更需要补习,即如果学生的学业水平较低,或者缺乏新知识所需要的前置知识,就需要在学习新知识之前补习。这是自适应教学系统存在的价值。然而补习量过大的自适应教学系统未必适合在学期中使用,因为学期中学生每天需要完成各学科的教学任务,补习量过大的话,很可能造成薄弱生跟不上班级学习进度的情况,从而增加其学习焦虑,甚至产生厌学情绪。

相关文章: